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One of the common routes to chaos is intermittency. Identification of the intermittency type is usually made
using the properties of the probability distribution of laminar phases and of the average length of the laminar
phases. Both have a statistical character and to obtain them a long time series has to be examined. Here, we
present a recurrence plot method applicable to the analysis of short time series and through which the type of
intermittency may be identified. The three types of intermittency introduced by Pomeau and Manneville and a
chaos-chaos intermittency induced by interior crisis were examined. The identification of the type of intermit-
tency is equivalent to the identification of the bifurcation associated with it. Our result seems particularly
interesting as our method allows the analysis of short time series. The effect of the measurement noise on the
effectiveness of the method is also discussed. An application of the method to the detection of type I intermit-
tency in measured heart rate variability data is discussed.
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I. INTRODUCTION

One of the common routes to chaos is intermittency �1�.
In such a state, the dynamical system switches between two
different kinds of behavior �called phases�. The residence
time in each of them is different and varies with the time, so
that it is impossible to foresee the moment for the next
switching. There exist several different types of intermit-
tency �three types of intermittencies investigated by Pomeau
and Manneville �2,3�, type X �4�, V �5,6�, and a group of
chaos-chaos intermittencies �1� among them the on-off �7�
and the in-out �8,9� intermittencies�. Each type of the phe-
nomenon is related to a different kind of bifurcation. For
example, type I intermittency occurs when the system is
close to a saddle-node bifurcation, type II is due to the Hopf
bifurcation, and type III—the reverse period doubling bifur-
cation. One kind of chaos-chaos intermittency is due to crisis
phenomena occurring in the system �1�. Thus, the recogni-
tion of the type of the intermittency observed in the dynami-
cal system is equivalent to determining the type of the bifur-
cation characteristic for the dynamics of that system in the
particular part of parameter space investigated.

The identification of the intermittency type is usually
based on the probability distribution of the length l of the
laminar phases—P�l� and the properties of the average
length of the laminar phases—�l�. Both properties have a
statistical character. Thus, to obtain them a long time series
has to be examined. In practice, often, the length of the time
series is limited, so it is important to find a method capable
to recognize the type of the intermittency using short time
series.

In 2002 Marwan et al. �10� showed that it is possible to
distinguish between time series with intermittency and with
other kinds of chaos using recurrence plots �RP� and recur-
rence quantification analysis �RQA�. They showed that the
laminar phases of intermittency correspond to horizontal
�and vertical� lines on the RP and that such lines form
squares and rectangles �11�. Occurrences of such patterns on
the RP are a sign that intermittency is present in the data.
However, Marwan et al. �10,11� did not define which kind of
intermittency they had observed.

It is the aim of this paper to examine the possibility to
distinguish the kind of intermittency occurring in the system
given the pattern obtained in a recurrence plot and using
RQA. We examined four kinds of intermittency: the three
types of intermittency defined by Pomeau and Manneville
and the chaos-chaos intermittency induced by an interior cri-
sis. To distinguish between the different kinds of intermit-
tency, we extended the RQA of Refs. �10,12� by introducing
two parameters. With our method, we were able to determine
the type of intermittency even in the presence of a moder-
ately high level of measurement noise.

II. METHOD

A. Recurrence plots and standard quantitative analysis

Recurrence plots were introduced in 1987 by Eckmann et
al. �13� as a simple, graphical method, useful for examining
short time series. The method is based on the Takens embed-
ding theorem �14�, which allows reconstructing the phase
space of a multidimensional dynamical system from a single
observable of the system.

To reconstruct the phase space of the dynamical system
studied from a single time series analyzed,

X = �x1,x2, . . . ,xi, . . . ,xn� , �1�

where n is the length of the series, a time series of N=n
− �m−1�� vectors,

Y = �y�1,y�2, . . . ,y� i, . . . ,y�n� , �2�

has to be prepared with

y� i = �xi,xi+1, . . . ,xi+�m−1��� , �3�

where m is the dimension of the reconstructed phase space
�the embedding dimension� and � is the time delay param-
eter. The two parameters can be obtained with the use of
several algorithms �1,3,15�. In 1987 Albano et al. �16�
showed that the Takens embedding theorem can be applied
also for short time series.

The parameter � is chosen so that the two scalars from the
time series, xi and xi+�, may be considered independent.
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Here, to obtain � we calculated the first minimum of the
mutual information function �MIF� �17� using the algorithm
introduced by Cellucci et al. �18�, choosing it because of its
speed.

The second parameter, which is crucial in constructing the
vectors �Eq. �3��, is the embedding dimension—m. To find
the best value of m, we used the percentage of false nearest
neighbors algorithm �19� implemented in the program Visual
Recurrence Analysis �VRA� �20�.

Unless otherwise stated in the text or in a figure caption,
the recurrence plots presented in this paper were generated
with the parameter m=1, �=1 and the cutoff parameter �
=0.1.

A recurrence plot is a N�N matrix Mij calculated from
the equation

Mij = ��� − 	y� i − y� j	�, i, j = 1,2, . . . ,N , �4�

where � is the Heaviside function, and � is a threshold pa-
rameter, the value of which is chosen arbitrarily. In our work,
we set � equal to 10% of the diameter of the attractor—
following Ref. �10�. The matrix Mij is represented graphi-
cally as a square composed of N�N black and white points:
black for Mij =1 and white when Mij =0.

Different behavior of the dynamical system creates differ-
ent recurrence patterns: long lines parallel to the main diag-
onal of the RP �Fig. 1�a�� are due to periodic orbits, white
noise fills the RP with homogeneously distributed black
points �Fig. 1�c��. For the chaotic state, in a recurrence plot
shown in low magnification �Fig. 1�b�� black points on the
RP are seemingly uniformly distributed. However, under a
larger magnification a distinct pattern of short parallel lines
appears and allows us to distinguish between a deterministic
chaotic state and random noise �13�.

To describe the patterns which occur in an RP, Zbilut et
al. �12� proposed the RQA. In this analysis the following
statistics can be defined on the RP: recurrence �REC�—the
percentage of the black points in the RP; determinism
�DET�—the percentage of the black points forming lines par-
allel to the main diagonal of the RP; Lmax—the maximum
length of such lines and Shannon entropy �ENT� of the dis-
tribution of these lines. In 2002 Marwan et al. �10� showed
that, when intermittency occurs in the dynamical system,
horizontal and vertical lines are obtained in the RP. These
lines correspond to the laminar phases. To describe such
lines they added three statistics to RQA: laminarity
�LAM�—the percentage of the black points forming vertical
lines, trapping time �TT�—the average length of such lines,
and Vmax—the maximum length of the vertical lines. They
also noted in Ref. �11� that the horizontal and vertical lines,
which are due to the laminar phases, form squares and rect-
angles.

In this paper, we show that the occurrence of different
kinds of intermittency results in various characteristic shapes
in the RP pattern—squares or rectangles or distorted squares
and rectangles. These shapes allow us to distinguish unam-
biguously between the different types of intermittency. We
supplemented the standard RQA by introducing two param-
eters Fa and Fb—measures of the surface of area of the re-
gions of the RP representing the laminar phases.

B. Extension of the recurrence plot quantitative analysis

As will be shown below, laminar phases of different types
of intermittencies are represented by regions of the RP which
have different shapes. Each of these shapes may be written
into a rectangle. With the delay and embedding dimension
chosen in the standard way, the shapes corresponding to the
different kinds of laminar phases depend on the parameter �.
We found empirically that � equal to 10% of the span of the
reconstructed attractor allowed us to distinguish between the
different types of intermittency best.

The parameter Fa is defined as the surface �measured as
the number of dark points� of the area of a region corre-
sponding to a laminar phase while Fb is the ratio of Fa to the
surface of the encircling rectangle: in the case of a laminar
phase in the form of a regular square, the encircling rectangle
is just the border of that square. If the laminar phase is rep-
resented by a rectangle with elongated upper right corner, the
encircling rectangle is the smallest rectangle into which fits
the square together with the elongation. Note that—to avoid
the effect of possible nonstationarity in a signal �1,13�—we
take into account only these regions of the RP corresponding

a)

0 20 40 60 80 100
i

0
0.2
0.4
0.6
0.8
1xi

b)

0 20 40 60 80 100
i

0
0.2
0.4
0.6
0.8
1xi

c)

0 20 40 60 80 100
i

-2

0

2xi

0

20

40

60

80

100i

0 20 40 60 80 100
i

0

20

40

60

80

100i

0 20 40 60 80 100
i

0

20

40

60

80

100i

0 20 40 60 80 100
i

FIG. 1. Examples of the recurrence plots �lower panels� for
different signals together with the raw data �upper panels�: �a� a
periodic signal obtained from the logistic equation for the control
parameter r=3.829; �b� a chaotic signal obtained from the logistic
equation for r=3.9999; �c� white noise. Note that, in the RP for the
deterministic chaotic signal, short lines parallel to the main diagonal
are present. Such lines do not occur in the RP of the white noise.
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to laminar phases which touch the diagonal. In a single time
series, both parameters vary from laminar phase to laminar
phase. To distinguish between different types of intermit-
tency distributions of these parameters will be used below.

In certain types of intermittency �e.g., in crisis-induced
chaos-chaos intermittency or when noise is present—see be-
low� the regions representing the laminar phases are not uni-
form and white points appear inside them. Below we as-
sumed that the given part of the RP is considered black if on
its edge not more than single white points appear.

III. RESULTS AND DISCUSSION

A. Generic models of the laminar phases of the
Pomeau-Manneville intermittencies

To obtain a recurrence plot image of the laminar phase of
each type of intermittency, the generic models for Pomeau-
Manneville intermittencies were analyzed. These models de-
scribe only the laminar phase so that chaotic bursts need to
be simulated by a random number generator.

For type I intermittency, the laminar phase is described by
the equation ��3��

xn+1 = xn + xn
2 + a , �5�

where a is the distance from the critical point and here equal
to 0.000 01. The value of laminar signal for this type of
intermittency increases monotonically. On the recurrence
plot, this signal is visible as a black square located by the
main diagonal �Fig. 2�. This shape reflects the dynamics of
the trajectory within the laminar phase. Deep inside the lami-
nar phase the change in trajectory position is very small so
that the adjacent points are recurrent. The laminar phase in
type I intermittency ends abruptly �in Fig. 2 for i about 400�
in a chaotic burst. This results in a uniformly black square
for a wide range of the cutoff parameter—�.

The laminar phase of type III intermittency may be mod-
eled by ��3��

xn+1 = − �1 + a�xn + uxn
3, �6�

where the parameters a=0.000 01 and u=0.001. The value
of the laminar signal for this case also increases but it alter-
nates. On the recurrence plot, the laminar phase is visible as
a square with an elongated upper right corner �kitelike
shape—Fig. 3�. In the bottom left corner of the kite there is
a uniformly black incomplete rectangle with a rounded upper
right corner. The upper right corner of the kitelike shape
outside the rectangle is not uniformly black. It consists of
parallel lines each a distance of 1 from each other �see mag-
nification in Fig. 3�. The shape and the shading are a result of
the dynamics within the laminar phase. At the beginning of
it, every point is close to the previous one. However, each
two successive points are on the opposite sides of the ghost
of the fixed point, so at the end of the laminar phase only
points distanced in the time by 1 are recurrent �for the given
cutoff parameter of the RP�.

Type II intermittency is a two-dimensional phenomenon.
Its laminar phase in polar coordinates may be described by
��3��

rn+1 = �1 + a�rn + urn
3,

�n+1 = �n + � , �7�

where a=0.005, u=0.000 01, and �=0.05. During the lami-
nar phase the trajectory moves on a spiral. In the recurrence
plot calculated for the variable xn=rn cos �n �or for yn
=rn sin �n� also a kitelike shape is obtained but this time its
structure is different from that obtained for type III
intermittency—Fig. 4. A square black shape is again visible.
However, instead of a clear cut rounded upper right corner,
oval white areas are embedded within the pattern. The elon-
gated kitelike shape this time has a structure characteristic
for the recurrence plot for the sinus function because, during
the laminar phase, the trajectory moves on a spiral—an al-
most periodic behavior. Equation �7� describes only the dy-
namics within a laminar phase of type II intermittency. Thus,
on the RP a black and white structure in the kitelike elonga-
tion of the square is visible. Changing the threshold param-
eter �, it is possible to obtain only a fully black RP—all
points in the time series are then recurrent—all belong to the
same laminar phase. For models describing the complete in-
termittent behavior—both the laminar phases and the chaotic
bursts between them—it is possible to obtain a black kitelike
shape representing the laminar phases on the RP. To obtain

FIG. 2. The RP calculated for the time series obtained from the
generic model of type I intermittency—Eq. �5�. This model de-
scribes only the laminar phase of type I intermittency. For this type
of intermittency, the image of the laminar phase is a black square
adjacent to the main diagonal of the RP. The laminar phase ends
abruptly—here at about i=400 �chaotic burst—not shown here�.
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this effect, we need to adjust the threshold parameter � prop-
erly: during the chaotic bursts, the trajectory leaves the lami-
nar region and the data points lying outside the laminar
phase are not recurrent to the points within it—see Sec. III C
below for further discussion.

The generic models �Eqs. �5�–�7�� are good models of the
laminar phases of the Pomeau-Manneville intermittency but
to study these phenomena one should take into account the
dynamics during chaotic bursts. Below we present results of
our analysis of different models exhibiting Pomeau-
Manneville intermittencies.

B. Type I intermittency

Type I intermittency was analyzed using the logistic equa-
tion,

xi+1 = rxi�1 − xi� , �8�

where r is the control parameter, as a model. The analysis
was performed for the values of the control parameter r
slightly smaller than rc=1+
8, where rc is the critical value
of the control parameter at which the period-3 window ap-
pears. The average length of the laminar phases increases as
the control parameter approaches the critical value. Time se-
ries for the control parameter values 3.828 39 and 3.828 425
were generated for the first iterate �series length 15 000� and
third iterate �length 5000� of the logistic map. Recurrence

plots for those time series were generated. The cutoff param-
eter was set to 10% of the diameter of the phase space �10�.
For better legibility, in the figures below, only the first 3000
�or 1000 for the third iterate� points from time series gener-
ated are shown.

In Fig. 5 it can be seen that, for the first iterate of the
logistic equation, laminar phases manifest themselves on the
recurrence plots as lines parallel to the main diagonal. These
lines are arranged into squares and rectangles. The distance
between them, within one of the rectangles, is equal to three
points �Fig. 6�—a result of the proximity of the period-3
window. Note that, in this case, within each laminar phase
the trajectory passes many times through three different in-
termittency channels in a sequence.

In the case of type I intermittency associated with a
period-p orbit, the pth iterate of the map should be used to
construct the recurrence plot. The squares are then mainly
located along the main diagonal of the RP. They correspond
to the laminar phases. Each square at the diagonal is a rep-
resentation of a trajectory crossing a single channel. When
the pth iterate is used, well defined black squares are ob-
tained. Figure 7 depicts the pattern obtained for the third
iterate of the logistic map for two values of the control pa-
rameter.

Additional squares appear at a distance from the main
diagonal when two squares situated at the main diagonal
have the same length �8 and 9 in Fig. 8�. These squares are
the representation of different trajectories traversing the
same intermittency channel which makes them pass close to
each other in phase space. Rectangles are situated at a dis-
tance from the main diagonal �Fig. 8�. They appear at the
crossing of the extensions of the edges of the squares. How-
ever, not every pair of the edges of squares leads to the
creation of a rectangle. For a rectangle to appear, both
squares must correspond to the same intermittency channel.
When two squares correspond to different intermittency
channels, the trajectory corresponding to one of the squares
is close to the one of the fixed points, and in the case of the
second square, it is close to another fixed point. However,
these fixed points are not close to each other in phase space
so the points of the trajectory within different intermittency
channels are not recurrent to each other.

The distribution of the area of the black squares for the
recurrence plots of the time series obtained from the third
iterate of the logistic equation is presented in Fig. 9. As can
be seen, the distribution of the area is similar to the distribu-
tion of the laminar phases of type I intermittency. The maxi-
mum length of the laminar phase is lmax= �rc−r�−1/2. If the
black squares and rectangles correspond to laminar phases,
the maximum value of square root of the area of squares
lying at the main diagonal �
Famax

� should be equal to the

lmax. One can see in Fig. 9 that 3
Famax
has a similar value to

that of lmax. For example, in Fig. 9�a� �for the approximate
analytic model of Eq. �3.15� from Ref. �21��, we obtain from
Eq. �3.15� of Ref. �21� lmax=165 while for the data obtained
from the logistic map using our method lmax equals 180 and
in part �b� of this figure 686 vs 750, respectively.

To verify the assumption that the distribution of 
Fa is
similar to the distribution of the laminar phase length P�l�, a

FIG. 3. RP calculated for a time series obtained from the generic
model of type III intermittency—Eq. �6� �lower graph� shown with
the original data �upper graph�. A black square with rounded upper
right corner is characteristic for the laminar phase of this type of
intermittency. The elongated of the upper right corner of the pattern
consists of lines parallel to the main diagonal. The distance between
these lines is equal to 1—see the magnification inset.
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time series from the original model used by Hirsh �21�,

xi+1 = xi + xi
2 + a , �9�

was calculated. This equation may be treated as a simplified
model for type I intermittency �3,21�. From this equation
only laminar phases can be generated and the reinjection
process has to be simulated. Following �21�, we assumed that
this equation is valid only for xi� �−x0 ,x0�. Outside this
range the dynamics was modeled by the logistic equation

with the control parameter r=3.999 �a chaotic state�. We
choose x0=0.07 and a=0.001. A time series of 40 000 points
was generated with 1246 laminar phases. For this time series,
the RP was calculated and the distribution of 
Fa was ob-
tained. One can see in Fig. 10 that the shape of the distribu-
tion of 
Fa is consistent with the theoretical curve given by
Eq. �3.15� in Ref. �21�. Note that the discrepancy between
the analytically obtained laminar phase distribution and the
one found by our method is due to the difference in the
models used �the simplified model of Ref. �19� and the lo-

FIG. 4. RP calculated for a time series obtained from the generic model of type II intermittency—Eq. �7� �lower graphs� shown with the
original data �upper graphs�. The left column depicts results for the x variable while the right—for the y variable of the model. For the
generic model, a black square with perforated upper and right edges is the characteristic shape for the laminar phase of this type of
intermittency. The perforation structure is due to the periodic behavior at the end of the laminar phase and is similar to the pattern obtained
for harmonic functions.
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FIG. 5. Recurrence plots and the time series calculated using the
logistic equation for the control parameter r smaller than rc. �a� r
=3.828 39; �b� r=3.828 425.
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FIG. 6. Enlargement of the RP shown in Fig. 5�a�. When a
laminar phase occurs, lines parallel to the main diagonal, forming
squares and rectangles, are present in the RP.
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gistic map used here�. Also, there is a difference in the limits
of the laminar phase assumed in the two methods. These
limits define the length of the laminar phase. In the case of
the recurrence diagram, the limits of the intermittency chan-
nel are a complex and unknown function of the cutoff pa-
rameter �. The same explains the discrepancies found in the
preceding paragraph.

The distribution of the parameter Fb was calculated �Fig.
11�. It can be seen that for this type of intermittency Fb is
equal to 1 for all laminar phases. For Fb=1, all squares
touching the main diagonal of the RP are uniformly black.

C. Type II intermittency

Type II intermittency is due to the subcritical Hopf bifur-
cation. In this bifurcation, a stable fixed point and an un-
stable limit cycle corrupt into a single unstable fixed point.
The laminar phase occurs when the trajectory of the system
is injected close to that unstable fixed point. The trajectory
then forms a spiral outward from the fixed point. When the
trajectory leaves this region the chaotic phase occurs ending
with a reinjection into the part of the phase space between
the fixed point and an unstable limit cycle. In contrast to the
generic model of type II intermittency �Sec. III A�, which
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FIG. 7. Recurrence plots of the signals obtained from the third
iterate of the logistic equation for the same control parameter values
as in Fig. 5: �a� r=3.828 39; �b� r=3.828 425.

FIG. 8. Schematic illustrating the origin of the recurrence
squares and rectangles for type I intermittency. Appearance of
squares 8 and 9 is a consequence of the occurrence of the squares 1
and 3—images of the laminar phases of the same length. The rect-
angles 4 and 6 are a result of the occurrence of the squares 2 and 3
each with a different length of the side, similarly, rectangles 5
and 7.
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FIG. 9. The histograms of 
Fa for the time series with type I
intermittency: part �a� r=3.828 39, the number of laminar phases
was 329; part �b� r=3.828 425, the number of laminar phases—68.
The maximum lengths of the laminar phases obtained analytically
�solid curve� using Eq. �3.15� in Hirsch et al. �21� were equal to 165
and 686, respectively.
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FIG. 10. The distribution of 
Fa obtained from the RP for the
simple model of the type I intermittency for x0=0.07 and a
=0.001. Black line: analytical result—according to Eq. �3.15� in
Hirsch et al. �21�.
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FIG. 11. The distribution of the parameter Fb for type I inter-
mittency: �a� r=3.828 39, the number of laminar phases in the time
series is 329; �b� r=3.828 425, the number of laminar phases—68.
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describes the dynamics within a single laminar phase, in sys-
tems exhibiting the complete intermittency laminar phases
may be intertwined: adjacent data points in the time series
belong to different spiral trajectories �22�.

A time series characteristic for type II intermittency was
obtained from the equations presented in Ref. �22�:

xi+1 = − ��1 + � + ��xi + xi
3�exp�− bxi

2� + �xi + �yi,

yi+1 = − ��1 + � + ��yi + yi
3�exp�− byi

2� + �yi − �xi. �10�

For b�1 /1− �1 /2��2+� �22� a subcritical Hopf bifurcation
occurs allowing type II intermittency to occur. Here, the pa-
rameters b, �, and � were set equal to b=0.14, �=0.02, �
=0.001, and �=0.0001 �22�.

The peculiar property of the model given by Eq. �10� is
that, during intermittency, two laminar phases are
intertwined—every other point of the trajectory is associated
with the same spiral. Figure 12�c� depicts two successive
laminar phases with the data shown for the x variable in Fig.
12�a� and for the y variable in Fig. 12�b�. Consequently, in
the RP analysis only every other point from the time series
was used. The RP of the single laminar phase is presented in
Fig. 13. As described in Sec. III A, for type II intermittency,
using an appropriate value of the threshold parameter � one
obtains a uniformly black kitelike shape for the laminar
phase—Fig. 13�a�. This typically occurs for � of the order of
10% of the attractor diameter. When � is decreased from this
value, the structure characteristic for the harmonic motion
occurring during the type II intermittency laminar phase will

appear �the kitelike elongation of the square—Fig. 13�b��
and allows to recognize the type of intermittency unambigu-
ously.

The RP �m=2, �=1, �=0.1� for the first 1000 points of
the time series calculated as every other point from x series
obtained from Eq. �10� is presented in Fig. 14�a�. The
squares and rectangles with an elongated upper right corner
�a uniformly black kitelike shape� characteristic for the lami-
nar phases are present. The choice of values of the � param-
eter assures that they are uniformly black. For the RP of the
complete series, the length of which was 10 000 points, a
histogram of 
Fa—a measure of the laminar phase length—
was created for the black fields �Fig. 14�b��. For type II in-
termittency, the probability distribution of the length of the
laminar phases is �3�

P�l� 	
�2 exp�4�l�

�exp�4�l� − 1�2 . �11�

This analytical function was fitted to the histogram of the

Fa. In Fig. 14�b� it can be seen that this histogram has a
shape characteristic for the histogram of the laminar phases
of type II intermittency. The correlation coefficient of the fit
is equal to R2=0.99. Also the distribution of Fb �Fig. 14�c��
has a shape that is significantly different from that obtained
for type I intermittency �Fig. 11�.

D. Type III intermittency

Type III intermittency occurs simultaneously with the re-
verse period doubling bifurcation �3�. In this bifurcation, an
unstable periodic orbit collides with a stable periodic orbit

FIG. 12. Trajectory during laminar phase of type II intermittency obtained from Eq. �10� with the following parameters: b=0.14, �
=0.02, �=0.001, and �=0.0001. The data for the x and y variables are shown in the left panels. Each thin line and thick line, respectively,
depict the data for separate laminar phases which are interleaved. The right panel depicts the shape of the trajectories with the arrows
marking the direction of motion.

DETECTION OF THE TYPE OF INTERMITTENCY USING … PHYSICAL REVIEW E 80, 026214 �2009�

026214-7



which has a period one half of that of the unstable orbit. As
a result of the bifurcation, both orbits are superseded by an
unstable periodic orbit with the smaller period.

Type III intermittency was obtained using one of the pair
of equations used for the generation of type II intermittency
but with the coupling omitted:

xi+1 = − ��1 + � + ��xi + xi
3�exp�− bxi

2� + �xi. �12�

For b=0.14, �=0.02, and �=0.005 type III intermittency
occurs in this system �22�. A time series of 10 000 points was
generated and the RP for this data was calculated. Figure
15�a� depicts the RP for the first 1000 points from that series.
The same parameters of the RP as those used for the analysis
of intermittency type I were set.

Laminar phases of type III intermittency are represented
in the recurrence plots as squares and rectangles with a
rounded upper right corner �Fig. 15�a��. The genesis of these
squares and rectangles is the same as for type I intermittency.
The distribution of the areas of the black fields of the recur-
rence plot for type III intermittency is presented in Fig.
15�b�. To this distribution the analytical function given by
the equation �3�

P�l� 	
�3/2 exp�4�l�

�exp�4�l� − 1�3/2 �13�

was fitted. As can be seen, the histogram of the 
Fa for type
III intermittency is similar to the theoretical distribution of
the laminar phases for that intermittency. The correlation co-
efficient of the fit is equal to R2=0.93. The distribution of the
Fb parameter is different than that for the intermittencies
discussed above �Fig. 15�c��.

E. Chaos-chaos intermittency

One of many different types of chaos-chaos intermittency
is caused by an interior crisis. In deterministic dynamical
systems, such a crisis is a collision between a chaotic attrac-

FIG. 13. The RPs of a single laminar phase of type II intermittency obtained from Eq. �10�. The parameters of the RP were set to m
=2, �=1, and �=0.1 in the left RP and �=0.01 in the right RP. In the right RP, the white regions in the kitelike elongation of the upper right
corner of the square—characteristic for type II intermittency is visible—for comparison see Fig. 4 and discussion in the text.

FIG. 14. �a� RP �m=2, �=1, �=0.1� and the time series for
type II intermittency obtained from Eq. �10� �parameters: b=0.14,
�=0.02, �=0.001, and �=0.0001�. �b� Histogram of 
Fa, the num-
ber of laminar phases—213 �black line—the analytical distribution
of the laminar phases for the type II intermittency—Eq. �11��; �c�
the probability distribution of Fb.
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tor and a coexisting unstable fixed point or an unstable peri-
odic orbit �1�. The interior crisis in the logistic map occurs
when the chaotic attractor, resulting from period doubling of
a periodic window, collides with an unstable orbit which
coexists with it and lies inside the attraction basin but does
not belong to the attractor. This kind of crisis occurs for the
logistic equation at the large control parameter end of every
periodic window.

In the case of the periodic-3 window of the logistic map,
the three parts of the chaotic attractor appear due to a period
doubling bifurcation. When the critical value of the control
parameter corresponding to the internal crisis is attained, the
trajectory occasionally slips out of the period doubled
period-3 orbit �chaotic orbit�. This occurs as an effect of the
collision between the chaotic attractor and the unstable peri-
odic orbit, which was created by a saddle-node bifurcation
when the period-3 window was created. In the chaos-chaos
intermittency a regular laminar phase does not occur. Inter-
mittency in this case means that the trajectory repeatedly
resides within the precrisis attractor �laminar phase� and re-
peatedly visits the part which was formed during the crisis
�chaotic phase� �1�.

Chaos-chaos intermittency induced by an interior crisis
was obtained from the logistic map for the control parameter
r=3.857. In Fig. 16, the RP of that signal is presented for the
third iterate of the logistic equation �only the first 1000 iter-
ates are depicted�. In this case, the RP for this type of inter-
mittency is similar to that obtained for type I intermittency.
However, when a magnification of the RP is examined �Fig.
17�, the lines forming a black field of the RP calculated for
the first iterate of the map are found to be not continuous—in
contrast to such lines for the case of type I intermittency.
Also, for the third iterate in the case of chaos-chaos intermit-
tency, the black fields characteristic for the laminar phases
are not uniformly black.

The distribution of the parameter Fa was calculated for
chaos-chaos intermittency. In Fig. 18 it can be seen that,
although the RP of this type of intermittency has many simi-
larities to that obtained for type I intermittency, the distribu-
tions of 
Fa and Fb have now distinctly different shapes
�compare Figs. 9 and 11�. Note that the distribution of Fb for
chaos-chaos intermittency may be mistaken for that of type
II. However, these two types of intermittency may still be
distinguished by the different shapes of the black fields in the
RPs.

F. Intermittency in systems with continuous time

Systems with the continuous time exhibiting intermitten-
cies type II and type III were examined. The time series with
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FIG. 15. �a� RP and data for type III intermittency �parameters:
b=0.14, �=0.02, and �=0.005�; RP parameters: m=2, �=1, and
�=0.1. �b� Histogram of the 
Fa; the number of laminar phases—55
�black line—the analytical distribution of the laminar phases for the
type III intermittency—Eq. �13��; �c� the probability distribution of
Fb.
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FIG. 16. The RP for chaos-chaos intermittency induced by an
interior crisis. The time series was obtained from the third iterate of
the logistic equation for control parameter r=3.857.
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FIG. 17. Magnification of the RP obtained from the first iterate
of the logistic equation for control parameter r=3.857—an example
of a laminar phase.

DETECTION OF THE TYPE OF INTERMITTENCY USING … PHYSICAL REVIEW E 80, 026214 �2009�

026214-9



type II intermittency was obtained from the system

d3X

dt3 + 

d2X

dt2 + �
dX

dt
+ �X + k1X2 + k2�dX

dt
�2

+ k3X
dX

dt

+ k4X
d2X

dt2 + k5X2d2X

dt2 = F cos��t� . �14�

For that system Richetti et al. �23� found that for the
parameters F=0.5, �=15, 
=1, �=1.2, k1=−100, k2=120,
k3=0, k4=−20, k5=100, and �=1.25 type II intermittency
occurs. The characteristic shape of the trajectory for this type
of intermittency is visible only in the stroboscopic section
�Fig. 19�b�� of the raw data �Fig. 19�a�� �see �23� for details�.
To examine the image of the laminar phases on the RP, only

points from the stroboscopic section were used. The time
delay �=3 was selected using the MIF, and the embedding
dimension m=4—using the false nearest neighbors method.

The time series with type III intermittency was obtained
from the system

d2X

dt2 + 0.2
dX

dt
+ X + 1.5X2 + 0.5X3 = FX cos��t� . �15�

Type III intermittency in this system occurs for F=0.85 and
�=1.6852 �24�. For this system the appropriate embedding
and delay are �=10 and m=3.

In Fig. 20 the recurrence plots obtained for the time series
from both systems can be seen. For the type II intermittency
the characteristic kitelike shape of the laminar phase is vis-
ible �Fig. 20�a��, however, the elongated upper right corner is
not solid black as it was for the type II intermittency ob-
tained from the discrete-time system. Also for the type III
intermittency obtained from the system with the continuous
time the shape of the laminar phase is slightly different than
obtained for a system with discrete time. In the present case,
the rounded upper right corner characteristic for the type III
intermittency is visible. Also the kitelike elongation of the
square consisting of lines parallel to the main diagonal is
present. However, now the space between lines is greater
than 1. This makes the image of this intermittency similar to
that for type II intermittency. However, while the larger dis-
tance between these lines in the case of type II intermittency
is due to the spiraling motion of the state point while for type
III intermittency the distance between the lines is due to the
sampling rate. Changing the sampling rate during data col-
lection for type II intermittency has no effect on the distance
between the lines parallel to the main diagonal. For type III
intermittency, to obtain the distance between the parallel
lines of 1 one needs to choose the proper sampling rate.
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FIG. 18. �a� The distribution of 
Fa obtained from chaos-chaos
intermittency �logistic equation; r=3.857�. Solid line—distribution
of the laminar phases for type II intermittency; dashed line—
distribution of the laminar phases for type III intermittency. �b� The
probability distribution of Fb.

FIG. 19. The characteristic shape of the trajectory for type II
intermittency is visible only in the stroboscopic section—�b� of the
raw data obtained from Eq. �14�—�a� �see �23� for details�.

FIG. 20. RP of systems with continuous time: part �a�—type II
intermittency �Eq. �14�� and part �b�—type III intermittency �Eq.
�15��. For type II intermittency, the characteristic kitelike shape is
visible. The distances between the lines forming the elongated up-
per right corner of the pattern are due to the sampling rate �integra-
tion time step�. For type III intermittency, the shape characteristic
for it is also visible—a square with a rounded upper right corner
and perforated outer edges.

KATARZYNA KLIMASZEWSKA AND JAN J. ŻEBROWSKI PHYSICAL REVIEW E 80, 026214 �2009�

026214-10



Thus, in spite of the seemingly ambiguous shape of the RP
patterns, it is possible to distinguish between type II and type
III intermittency for systems with continuous time.

G. Effect of measurement noise

The effect of measurement noise on the performance of
our method presented above was analyzed. To all time series
used for the previous calculations, measurement noise in the
following form was added:

xi, = xi�1 + p� , �16�

where  is a random number uniformly distributed in the
range �0,1�, and p the level of noise �in percent�. We applied
noise of up to p=30%. Figures 21–23 demonstrate the effect
of 10% measurement noise on the different types of the in-
termittencies studied here. It can be seen that noise of that
level causes the squares and rectangles characteristic for the
laminar phases to be no longer uniformly black but that
white points occur inside them. However, the patterns char-
acteristic for each type of intermittency remain recognizable.
Also, in spite of the noise, the shapes of the histograms of

Fa were also preserved for the types of intermittency exam-
ined here.

Using just the images of the RP pattern obtained �Fig. 21�,
we can immediately distinguish type II and type III unam-
biguously. Type I intermittency and chaos-chaos intermit-
tency in the presence of noise appear similar. To distinguish
them, the histograms of 
Fa should be used—for the case of
the period-3 window of the logistic map given here as an
example—with the third iterate of the map. In Fig. 22�a� the
characteristic for type I intermittency U shape is depicted,

while in the rest of the figure for the other types of intermit-
tencies the distributions of 
Fa have other shapes—also
characteristic for each of them. On the other hand, the histo-
grams of Fb in the presence of noise become similar to each
other �Fig. 23�.

If the first iterate of the logistic map needs to be exam-
ined, to distinguish between the type I or chaos-chaos inter-
mittency, a magnification of the images of the laminar phases
in the RP should be used. As can be seen in Fig. 24�a�, for
type I intermittency lines parallel to the main diagonal are
present in the RP. In the case of measurement noise, in these
lines gaps appear �Fig. 24�b��. For the chaos-chaos intermit-
tency the lines parallel to the main diagonal are broken even
in the case without noise. But, as can be seen in Fig. 24�c�,
many of these lines are shifted with respect to each other. In
the case of chaos-chaos intermittency with measurement
noise, the gaps in the parallel lines are longer than for the
case without noise and parallel displacements between
neighboring parts of the lines are visible also—see the parts
of Figs. 24�c� and 24�d� marked by gray rectangles. We were
able to distinguish all the kinds of intermittency discussed
here up to the level of 30% of measurement noise in this
way.

H. Application to heart rate variability data

The method presented above was used to detect intermit-
tency in recordings of heart rate variability �HRV�. Although

FIG. 21. The recurrence plots of four different types of intermit-
tencies with measurement noise added to the time series. The noise
level was 10%. �a� Type I intermittency r=3.828 425; �b� type II
intermittency; �c� type III intermittency; �d� chaos-chaos intermit-
tency r=3.857.

FIG. 22. The distribution of 
Fa for different types of intermit-
tencies obtained from the RPs presented in Fig. 21. Noise level—
10%. �a� Type I intermittency r=3.828 425 �solid curve—the ana-
lytical distribution of the laminar phases for the simple model of
type I intermittency—Eq. �9��; �b� type II intermittency �solid
curve—the analytical distribution of the laminar phases for the type
II intermittency—Eq. �11��; �c� type III intermittency �solid curve—
the analytical distribution of the laminar phases for the type III
intermittency—Eq. �13��; �d� chaos-chaos intermittency r=3.857
�solid line—distribution of the laminar phases for type II intermit-
tency; dashed line—distribution of the laminar phases for type III
intermittency�.
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the ECG itself is a continuous time signal, the heart rate
variability is measured as a time series of the time intervals
between heart beats—the RR intervals. The latter series rep-
resents a discrete time system �a point process�: each element
of the series is the time between specific maxima �the R
peak� of the ECG trace. Recently, using a method involving
the calculation of the average deviation of the data in a short
sliding window, type I intermittency was found in 24 h re-
cordings of heart rate variability of certain patients �25,26�
but not in recordings of the HRV of normal subjects. Here,
we demonstrate the applicability of our method to such data
using a 20 000 data-point long fragment of a 24 h recording
registered for a postmyocardial infarction patient. In the
whole 24 h recording, there were less than 1000 premature
ventricular beats so that the case may be classified as sinus
rhythm. A fragment of the data is shown in the upper panel
of Fig. 25�a� together with the corresponding RP just below.
The parameters of the RP used in this case were m=6 �this
value was obtained as the best embedding dimension by the
false nearest neighbors method�, �=1, and �=300. The value
of the threshold parameter was chosen as 10% of the span of
the reconstructed six-dimensional phase space. For this value
of the embedding dimension, the span of the reconstructed
phase space was slightly above 2900. Black squares and
rectangles—the pattern characteristic for type I
intermittency—may be seen in the RP. The distributions of
the parameters 
Fa and Fb are shown in Figs. 25�b� and
25�c�, respectively. The solid curve in Fig. 25�b� depicts the
best fit of the analytic expression to the distribution: Eq.
�3.15� in Ref. �21�. It can be seen that maximum laminar
phase length of the fitting curve agrees rather well with the
first right peak in the measured distribution but that the over-
all shape of the latter departs from the shape predicted by

simple theory. The exact shape of the distribution obtained
depends on several factors including the symmetry of the
map close to the bifurcation point, on reinjection probability
density and on the definition of the end of the intermittency
channel used in the algorithm for the recognition of laminar
phases. The properties of the map that is responsible for the
intermittency in RR intervals are unknown so we can only
surmise as to reasons for the shape of the laminar phase
distribution. The long tail and additional peaks in this distri-
bution were explained in Refs. �26,27�. On the other hand,
the distribution of Fb is exactly such as one would expect for
type I intermittency with noise and may be used to decide
that this phenomenon indeed occurs in the data analyzed. To
double check if this is the case, we used that same method of
determining the distribution of laminar phases as was used in
Ref. �25�. The results are shown in Fig. 26. It can be seen
that the distribution measured here and the one found by the
previous method coincide. Note that here we used just a
20 000 data-point fragment of the 24 h heart rate variability
recording while in Ref. �25� the complete set was used.

As additional proof that the dynamics of the heart rate
presented in this section corresponds to a type I intermit-
tency, we used the RP to detect and extract two consecutive
laminar phases from the time series of RR intervals. In Fig.
27�a� we show the RP formed by 100 consecutive RR inter-
vals from the same recording as discussed above. A pattern
characteristic for four laminar phases is present in the RP. We

FIG. 23. The distribution of Fb for different types of intermit-
tencies with measurement noise added to the time series. Noise
level—10%. �a� Type I intermittency r=3.828 425; �b� type II in-
termittency; �c� type III intermittency; �d� chaos-chaos intermit-
tency r=3.857.
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FIG. 24. The comparison between type I intermittency without
�a�, and with �b� measurement noise, with chaos-chaos intermit-
tency without �c� and with �d� noise for the first iterate of the lo-
gistic equation. For type I intermittency, lines parallel to the main
diagonal are visible. In case of noise these lines have gaps. For
chaos-chaos intermittency the lines parallel to the main diagonal are
also visible but even without noise these lines have gaps. For chaos-
chaos intermittency parts of the lines are shifted with respect to
each other. The gray rectangles mark corresponding patterns in the
two cases.
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used the limits of the squares situated at the diagonal of the
pattern to identify the indices corresponding to the laminar
phases. In part �b� of the same figure, the fragment of the
time series corresponding to the RP is presented with the
laminar phases marked by vertical dashed lines, and in part
�c�—the first return map formed from these laminar phases;
the arrows depict the direction of motion. In the latter figure,
two passages through the intermittency channel are seen as
expected in type I intermittency—an indication of the prox-

imity to the saddle-node bifurcation. The small wiggles in
the trajectory seen during the traversing of the channel are
due to noise. Note that—just as in the data of Ref. �25�—the
laminar phases are short: their length does not exceed ten RR
intervals. This is also seen in Fig. 26.

IV. CONCLUSIONS

Recurrence plots can be used for detecting the effect of
the proximity of the dynamical system to different types of
bifurcation and the intermittencies which then occur. In this
work, using both the generic models for the laminar phases,
discrete models for complete intermittencies and also con-
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FIG. 25. Application of the method to heart rate variability data.
Part �a� upper panel: the RP of a time series extracted from a 24 h
recording of the heart rate �morning hours�. For legibility, only a
1000 data-point long fragment of the RP is presented; the complete
data set analyzed by the extended recurrence plot analysis was
20 000 data points long. Lower panel: the recurrence plot of the
data in the upper panel obtained with the parameters m=6, �=1,
and �=300; part �b�: the distribution of the parameter 
Fa for the
complete data set; part �c�: the distribution of Fb for the complete
data set. The total number of laminar phases was 1038.
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FIG. 26. A comparison of the results presented in Fig. 25�b�
with results presented in Żebrowski �25�. Light gray—results from
Żebrowski �25� �for this part of the figure the y axis is on the right
side of the plot and the x axis—at the top�; dark gray—results
presented in Fig. 25�b�; black line—distribution of the laminar
phases for the simple model of type I intermittency �Eq. �3.15� in
Hirsch et al. �21��.
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FIG. 27. �a� A fragment of the RP of the HRV data in Fig.
18—black squares are the signature of type I intermittency. �b� The
raw data used to obtain �a�. The detected laminar phases are marked
by dashed lines. �c� The first return map for the selected parts of the
HRV data in part �b�—two passages through a single intermittency
channel are visible. The arrows depict the direction of motion.

DETECTION OF THE TYPE OF INTERMITTENCY USING … PHYSICAL REVIEW E 80, 026214 �2009�

026214-13



tinuous time models for type II and type III intermittencies,
we showed that by using recurrence plots it is possible to
differentiate between all three Pomeau-Manneville intermit-
tencies and to distinguish them from the chaos-chaos inter-
mittency induced by an interior crisis.

When the examined time series is so short that the distri-
bution of laminar phases may not be obtained due to poor
statistics, the distinction between different kinds of intermit-
tency may be made graphically. The RP patterns for laminar
phases for Pomeau-Manneville intermittencies differ among
themselves in the shape of the upper right corner. Type I
intermittency forms uniformly black squares and rectangles,
type II—a characteristic black kitelike shape, and type III—
squares and rectangles with a rounded upper right corner
inside a not fully darkened kitelike shape; for the crisis-
induced chaos-chaos intermittency—black squares and rect-
angles dotted with a number of white points. The uniformly
black bottom left corner of the shape characteristic for the
laminar phase always has the shape of a square—it corre-
sponds to the beginning of the laminar phase when the tra-
jectory passes the immediate vicinity of the ghost of the
fixed point. Then the location of the trajectory changes very
slowly, so successive points of the trajectory are recurrent.

When the examined time series is long enough, the distri-
bution of the parameter introduced in this paper—
Fa—can

be obtained from the RP. These distributions are sufficiently
similar to the distribution of the laminar phases characteristic
for each of the different types of the intermittencies to allow
distinguishing them. The effect of measurement noise com-
plicates the distinction between the different kinds of inter-
mittency but we were able to distinguish all the kinds of
intermittency discussed here up to the level of 30% of mea-
surement noise.

The method presented above was successfully applied to
experimental data—heart rate variability recordings. The re-
sults obtained confirmed the results obtained earlier that type
I intermittency is present in some cases of heart rate variabil-
ity recordings.

The main advantage of the method presented in this paper
is that it can be applied to short data series. Standard meth-
ods of distinguishing between different types of intermitten-
cies require long time series. This method also allows us to
detect a single passage of the trajectory through a laminar
channel and also allows us to determine what type of inter-
mittency this channel is related to. This means that having
detected a single intermittent channel by its characteristic RP
pattern we are able to state that the system is in the proximity
of the bifurcation recognized in this way.
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